irmad
IRMAD
¶
Bases: MetaAlgo
Iteratively Reweighted Multivariate Alteration Detection
The Multivariate Alteration Detection (MAD) algorithm aims to identify a linear transformation that minimises the correlation between the canonical components of the two images thereby maximising change information. Iteratively Reweighted (IR)-MAD is an improvement on the MAD approach where observations are iteratively reweighted in order to establish a better no change background which allows better separability between change and no-change.
Accepted flags¶
- niter = Number of iterations IRMAD should be run
- sig = Change map significance level
- icm = Initial change mask
References¶
- Nielsen, A. A. (2007). The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data. IEEE Transactions on Image Processing, 16(2):463–478. Internet http://www2.compute.dtu.dk/pubdb/pubs/4695-full.html.
Source code in changedet/algos/irmad.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
|
run(im1, im2, **flags)
classmethod
¶
Run IRMAD algorithm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
im1 |
ndarray
|
Image 1 array |
required |
im2 |
ndarray
|
Image 2 array |
required |
**flags |
dict
|
Flags for the algorithm |
{}
|
Run changedet --algo irmad algo_obj --help
for information on flags.
Source code in changedet/algos/irmad.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
|